A Visual Process Calculus for Biology
نویسنده
چکیده
This chapter presents a visual process calculus for designing and simulating computer models of biological systems. The calculus is based on a graphical variant of stochastic pi-calculus, extended with mobile compartments, and the simulation algorithm is based on standard kinetic theory of physical chemistry. The calculus forms the basis of a formal visual programming language for biology. The basic primitives of the calculus are first introduced by a series of examples involving genes and proteins. More complex features of the calculus are then illustrated by examples involving gene networks, cell differentiation, and immune system response. The main benefit of the calculus is its ability to model large systems incrementally, by directly composing simpler models of subsystems. The formal nature of the calculus also facilitates mathematical analysis of models, which in future could help provide insight into some of the underlying properties of biological systems.
منابع مشابه
The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملEstimation of metallurgical parameters of flotation process from froth visual features
The estimation of metallurgical parameters of flotation process from froth visual features is the ultimate goal of a machine vision based control system. In this study, a batch flotation system was operated under different process conditions and metallurgical parameters and froth image data were determined simultaneously. Algorithms have been developed for measuring textural and physical froth ...
متن کاملSLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS
The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...
متن کامل